Resumen
México ocupa el quinto lugar en incidencia de obesidad a nivel mundial. Esta condición es un factor de riesgo para la ocurrencia de cardiopatías, Diabetes Mellitus tipo II, cáncer, complicaciones reproductivas y trastornos psicológicos, entre otras patologías. Dado que la dopamina regula el comportamiento alimentario, es crucial investigar cómo los receptores dopaminérgicos pueden mejorar las intervenciones farmacológicas contra la obesidad. En consecuencia, en el presente trabajo se estudió el efecto de la activación farmacológica sistémica de los receptores dopaminérgicos de la familia D2-like (D2, D3 y D4) sobre la ingesta de alimento estándar y la expresión de la saciedad. Se usaron ratas macho (cepa Wistar) con un peso de 220-240 g, a las que se les administraron subcutáneamente dosis de 0.03, 0.1 o 0.3 mg/kg de quinpirole (agonista D2-like) al inicio de la fase oscura del ciclo luz/oscuridad. Durante un periodo de dos horas, se evaluó tanto la ingesta de alimento estándar como la secuencia de saciedad conductual (SSC). Nuestros resultados indican que las dosis de 0.03 y 0.1 mg/kg disminuyen la ingesta de alimento sin alterar la expresión de la saciedad postprandial. Sin embargo, la dosis de 0.3 mg/kg desestabiliza la SSC, impidiendo la expresión de la saciedad debido a un efecto motor. Nuestros hallazgos sugieren que dosis bajas de quinpirole podrían ofrecer una opción para el tratamiento de la obesidad sin afectar la expresión de la saciedad postprandial
Citas
Alcalde-Rabanal, J. E., Orozco-Núñez, E., Espinosa-Henao, O. E., Arredondo-López, A., & Alcayde-Barranco, L. (2018). The complex scenario of obesity, diabetes and hypertension in the area of influence of primary healthcare facilities in Mexico. PloS One, 13(1), e0187028. https://doi.org/10.1371/journal.pone.0187028
Baladi, M. G., Newman, A. H., & France, C. P. (2010). Dopamine D3 receptors mediate the discriminative stimulus effects of quinpirole in free-feeding rats. The Journal of Pharmacology and Experimental Therapeutics, 332(1), 308–315. https://doi.org/10.1124/jpet.109.158394
Barrea, L., Pugliese, G., Muscogiuri, G., Laudisio, D., Colao, A., & Savastano, S. (2020). New-generation anti-obesity drugs: naltrexone/bupropion and liraglutide. An update for endocrinologists and nutritionists. Minerva Endocrinologica, 45(2), 127–137. https://doi.org/10.23736/S0391-1977.20.03179-X
Cooper, S. J., & Al-Naser, H. A. (2006). Dopaminergic control of food choice: contrasting effects of SKF 38393 and quinpirole on high-palatability food preference in the rat. Neuropharmacology, 50(8), 953–963. https://doi.org/10.1016/j.neuropharm.2006.01.006
Costall, B., Hendrie, C. A., Kelly, M. E., & Naylor, R. J. (1987). Actions of sulpiride and tiapride in a simple model of anxiety in mice. Neuropharmacology, 26(2-3), 195–200. https://doi.org/10.1016/0028-3908(87)90209-7
Eilam, D., & Szechtman, H. (1989). Biphasic effect of D-2 agonist quinpirole on locomotion and movements. European Journal of Pharmacology, 161(2-3), 151–157. https://doi.org/10.1016/0014-2999(89)90837-6
Gadde, K. M., Martin, C. K., Berthoud, H. R. & Heymsfield, S. B. (2018). Obesity: Pathophysiology and Management. Journal of the American College of Cardiology, 71(1), 69–84. https://doi.org/10.1016/j.jacc.2017.11.011
Halford, J. C., Wanninayake, S. C. & Blundell, J. E. (1998). Behavioral satiety sequence (BSS) for the diagnosis of drug action on food intake. Pharmacology, Biochemistry, and Behavior, 61(2), 159–168. https://doi.org/10.1016/s0091-3057(98)00032-x
Huang, J. J., Yen, C. T., Liu, T. L., Tsao, H. W., Hsu, J. W. & Tsai, M. L. (2013). Effects of dopamine D2 agonist quinpirole on neuronal activity of anterior cingulate cortex and striatum in rats. Psychopharmacology, 227(3), 459–466. https://doi.org/10.1007/s00213-013-2965-4
Kuo, D. Y. (2002). Co-administration of dopamine D1 and D2 agonists additively decreases daily food intake, body weight and hypothalamic neuropeptide Y level in rats. Journal of Biomedical Science, 9(2), 126–132. https://doi.org/10.1007/BF02256023
Kuo, D. Y. (2003). Further evidence for the mediation of both subtypes of dopamine D1/D2 receptors and cerebral neuropeptide Y (NPY) in amphetamine-induced appetite suppression. Behavioural Brain Research, 147(1-2), 149–155. https://doi.org/10.1016/j.bbr.2003.04.001
Ladenheim, E. E. (2015). Liraglutide and obesity: a review of the data so far. Drug Design, Development and Therapy, 9, 1867–1875. https://doi.org/10.2147/DDDT.S58459
López-Alonso, V. E., Hernández-Correa, S., Escobar, C., Escartín-Pérez, R. E., Mancilla-Díaz, J. M. & Díaz-Urbina, D. (2023). The central blockade of the dopamine DR4 receptor decreases sucrose consumption by modifying the microstructure of drinking behavior in male rats. IBRO Neuroscience Reports, 14, 195–201. https://doi.org/10.1016/j.ibneur.2023.02.001
Malmberg, A. & Mohell, N. (1995). Characterization of [3H]quinpirole binding to human dopamine D2A and D3 receptors: effects of ions and guanine nucleotides. The Journal of Pharmacology and Experimental Therapeutics, 274(2), 790–797.
Mirmohammadsadeghi, Z., Shareghi Brojeni, M., Haghparast, A. & Eliassi, A. (2018). Role of paraventricular hypothalamic dopaminergic D1 receptors in food intake regulation of food-deprived rats. European Journal of Pharmacology, 818, 43–49. https://doi.org/10.1016/j.ejphar.2017.10.028
Missale, C., Nash, S. R., Robinson, S. W., Jaber, M. & Caron, M. G. (1998). Dopamine receptors: from structure to function. Physiological reviews, 78(1), 189–225. https://doi.org/10.1152/physrev.1998.78.1.189
Palmiter, R. D. (2007). Is dopamine a physiologically relevant mediator of feeding behavior?. Trends in Neurosciences, 30(8), 375–381. https://doi.org/10.1016/j.tins.2007.06.004
Rowlett, J. K., Mattingly, B. A. & Bardo, M. T. (1995). Repeated quinpirole treatment: locomotor activity, dopamine synthesis, and effects of selective dopamine antagonists. Synapse, 20(3), 209–16. doi: 10.1002/syn.890200304. PMID: 7570352.
Rusk, I. N. & Cooper, S. J. (1988). Profile of the selective dopamine D-2 receptor agonist N-0437: its effects on palatability- and deprivation-induced feeding, and operant responding for food. Physiology & Behavior, 44(4-5), 545–553. https://doi.org/10.1016/0031-9384(88)90317-4
Saebi Rad, F., Haghparast, A. & Eliassi, A. (2020). Ventral Tegmental Area Microinjected-SKF38393 Increases Regular Chow Intake in 18 Hours Food-Deprived Rats. Basic and Clinical Neuroscience, 11(6), 773–780. https://doi.org/10.32598/bcn.11.6.2226.1
Shamah-Levy, T., Romero-Martínez, M., Barrientos-Gutiérrez, T., Cuevas-Nasu, L., Bautista-Arredondo, S., Colchero, M.A., Gaona-Pineda, E.B., Lazcano-Ponce, E., Martínez-Barnetche, J., Alpuche-Arana, C., Rivera-Dommarco, J. (2022). Encuesta Nacional de Salud y Nutrición 2021 sobre Covid-19. Resultados nacionales. Instituto Nacional de Salud Pública.
Starr, B. S., & Starr, M. S. (1986). Grooming in the mouse is stimulated by the dopamine D1 agonist SKF 38393 and by low doses of the D1 antagonist SCH 23390, but is inhibited by dopamine D2 agonists, D2 antagonists and high doses of SCH 23390. Pharmacology, Biochemistry, and Behavior, 24(4), 837–839. https://doi.org/10.1016/0091-3057(86)90421-1
Stuchlik, A., Rehakova, L., Rambousek, L., Svoboda, J. & Vales, K. (2007). Manipulation of D2 receptors with quinpirole and sulpiride affects locomotor activity before spatial behavior of rats in an active place avoidance task. Neuroscience Research, 58(2), 133-9. doi: 10.1016/j.neures.2007.02.006. Epub 2007 Feb 16. PMID: 17360063.
Tejas Juárez, J. G., Mancilla Díaz, J. M., Florán Garduño, B. & Escartín Pérez, R. E. (2010). Los receptores dopaminérgicos D2/D3 hipotalámicos participan en la regulación del comportamiento alimentario. Revista Mexicana de Análisis de la Conducta, 36(2), 53-69. Recuperado en 17 de agosto de 2023, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-45342010000200005&lng=es&tlng=es.
Tejas-Juárez, J. G., Cruz-Martínez, A. M., López-Alonso, V. E., García-Iglesias, B., Mancilla-Díaz, J. M., Florán-Garduño, B. & Escartín-Pérez, R. E. (2014). Stimulation of dopamine D4 receptors in the paraventricular nucleus of the hypothalamus of male rats induces hyperphagia: involvement of glutamate. Physiology & Behavior, 133, 272–281. https://doi.org/10.1016/j.physbeh.2014.04.040
Terry, P., Gilbert, D. B. & Cooper, S. J. (1995). Dopamine receptor subtype agonists and feeding behavior. Obesity Research, 3 Suppl 4, 515S–523S. https://doi.org/10.1002/j.1550-8528.1995.tb00221.x
Ukai, M., Nakayama, S., & Kameyama, T. (1988). Apomorphine markedly potentiates naltrexone-induced hypodipsia in the rat. Brain Research, 451(1-2), 357–360. https://doi.org/10.1016/0006-8993(88)90784-6
Valdés Miramontes, E.H., Enciso Ramírez, M.A., Fonseca Bustos, V. & Pineda Lozano, J.E. (2022). Obesity, energy intake and eating behavior: A review of the main factors involved / Obesidad, ingesta energética y comportamiento alimentario: Una revisión de los principales factores involucrados. Revista Mexicana de Trastornos Alimentarios/Mexican Journal of Eating Disorders. 10(3), 308-320. https://doi.org/10.22201/fesi.20071523e.2019.2.563
Wellman P. J. (2008). Systemic mazindol reduces food intake in rats via suppression of meal size and meal number. Journal of Psychopharmacology (Oxford, England), 22(5), 532–535. https://doi.org/10.1177/0269881107083837
Yonemochi, N., Ardianto, C., Yang, L., Yamamoto, S., Ueda, D., Kamei, J., Waddington, J. L. & Ikeda, H. (2019). Dopaminergic mechanisms in the lateral hypothalamus regulate feeding behavior in association with neuropeptides. Biochemical and Biophysical Research Communications, 519(3), 547–552. https://doi.org/10.1016/j.bbrc.2019.09.037
Zarrindast, M. R., Owji, A. A. & Hosseini-Nia, T. (1991). Evaluation of dopamine receptor involvement in rat feeding behaviour. General Pharmacology, 22(6), 1011–1016. https://doi.org/10.1016/0306-3623(91)90570-v
© Revista Mexicana de Trastornos Alimentarios/Mexican Journal of Eating Disorders.