Resumen
La huella de carbono de los alimentos, desde su producción hasta su desecho, genera emisiones de dióxido de carbono (CO2) y otros gases de efecto invernadero (GEI) que contribuyen al cambio climático. Modificar nuestros hábitos alimenticios puede ser una estrategia para reducir las emisiones. Esta revisión compara el impacto ambiental de diferentes dietas, enfocándose en las emisiones CO2 y GEI. Se utilizó el método SALSA para buscar, evaluar, sintetizar y analizar información de artículos científicos indexados en bases de datos internacionales. Se encontró que las dietas vegana y vegetariana (elección personal) y las dietas de países asiáticos como India y Tailandia (rasgos culturales) tienen el menor impacto ambiental. En ambos casos, las bajas emisiones se asocian a un alto consumo de vegetales y un bajo o nulo consumo de carne. Los estudios coinciden en que la mejor elección para un desarrollo sostenible es una dieta que incluya un consumo moderado de carne roja y priorice productos locales. Se espera este trabajo ayude a los consumidores a tomar decisiones informadas.
Citas
Al-Jawaldeh, A., Almamary, S., Mahmoud, L. & Nasreddine, L. (2020). Leveraging the Food System in the Eastern Mediterranean Region for Better Health and Nutrition: A Case Study from Oman. International Journal of Environmental Research and Public Health, 17(19), 7250. https://doi.org/10.3390/ijerph17197250
Ammann, J., Arbenz, A., Mack, G., Nemecek, T. & El, N. (2023). A review on policy instruments for sustainable food consumption. Sustainable Production and Consumption, 36, 338-353. https://doi.org/10.1016/j.spc.2023.01.012
Arrieta, E. M., Fischer, C. G., Aguiar, S., Geri, M., Fernández, R. J., Coquet, J. B., Scavuzzo, C., Rieznik, A., León, A., González, A. & Jobbágy, E. (2022). The health, environmental, and economic dimensions of future dietary transitions in Argentina. Sustainability Science, 1-17. https://doi.org/10.1007/s11625-021-01087-7
Arrieta, M. E. & González, A.D. (2018). Impact of current, National Dietary Guidelines and alternative diets on greenhouse gas emissions in Argentina. Food Policy, 79, 58-66. https://doi.org/10.1016/j.foodpol.2018.05.003
Avendaño, C., Sánchez, M., & Valenzuela, C. (2020). Insectos: son realmente una alternativa para la alimentación de animales y humanos. Revista chilena de nutrición, 47(6), 1029-1037. https://dx.doi.org/10.4067/S0717-75182020000601029
Auclair, O. & Burgos, S. A. (2021a). Protein consumption in Canadian habitual diets: usual intake, inadequacy, and the contribution of animal- and plant-based foods to nutrient intakes. Applied Physiology, Nutrition, and Metabolism, 46(5), 501-510.
https://doi.org/10.1139/apnm-2020-0760
Auclair, O., & Burgos, S. A. (2021b). Carbon footprint of Canadian self-selected diets: Comparing intake of foods, nutrients, and diet quality between low- and high-greenhouse gas emission diets. Journal of Cleaner Production, 316, 128245. https://doi.org/10.1016/J.JCLEPRO.2021.128245
Bach-Faig, A., Berry, E. M., Lairon, D., Reguant, J., Trichopoulou, A., Dernini, S., Medina, F. X., Battino, M., Belahsen, R., Miranda, G., Serra-Majem, L., Aranceta, J., Atinmo, T., Barros, J. M., Benjelloun, S., Bertomeu-Galindo, I., Burlingame, B., Caballero-Bartolí, M., Clapés-Badrinas, C., … Padulosi, S. (2011). Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutrition, 14(12A), 2274–2284. https://doi.org/10.1017/S1368980011002515
Cavaliere, A., De Marchi, E., Frola, E. N., Benfenati, A., Aletti, G., Bacenetti, J., & Banterle, A. (2023). Exploring the environmental impact associated with the abandonment of the Mediterranean Diet, and how to reduce it with alternative sustainable diets. Ecological Economics, 209, 107818. https://doi.org/10.1016/j.ecolecon.2023.107818
Chol., O. N., Pak, S. C., Ri, R. J., & Han, H. I. (2022). Life cycle-carbon footprints for environmental performance/labeling of crop-based food products: analyses of complementary functional units and hotspots. International Journal of Environmental Science and Technology, 20, 2375-2388. https://doi.org/10.1007/s13762-022-04174-z
Codina, L. (2020). Cómo hacer revisiones bibliográficas tradicionales o sistemáticas utilizando bases de datos académicas. Revista ORL, 11(2), 139-153. https://doi.org/10.14201/orl.22977
Dixon, K. A., Michelsen, M. K., & Carpenter, C. L. (2023). Modern Diets and the Health of Our Planet: An Investigation into the Environmental Impacts of Food Choices. Nutrients, 15(3), 1–18. https://doi.org/10.3390/nu15030692
Doherty, B., Benton, T. G., Fastoso, F. J. & Gonzalez, H. (2017). British Food- What Role Should UK Food Producers have in Feeding the UK? Research Report. University of York. Recuperado de https://eprints.whiterose.ac.uk/112876/
Ekmeiro, J. E. & Arévalo-Vera, C. R.(2021) Vegetarianismo: una caracterización antropométrica, dietética y motivacional en adultos venezolanos. Revista Salud Pública y Nutrición, 20(4), 57-72. https://doi.org/10.29105/respyn20.4-6
Esteve-Llorens, X., Darriba, C., Moreira, M. T., Feijoo, G. & González-García, S. (2019). Towards an environmentally sustainable and healthy Atlantic dietarypattern: Life cycle carbon footprint and nutritional quality. Science of Total Environment, 646, 704-715. https://doi.org/10.1016/j.scitotenv.2018.07.264
Gámbaro, Al., Raggio, L., Dauber, C., Ellis, A. C. & Toribio, Z. (2011). Conocimientos nutricionales y frecuencia de consumo de alimentos: un estudio de caso. Archivos Latinoamericanos de Nutrición, 61(3), 308-315. Recuperado de http://riquim.fq.edu.uy/archive/files/54d1e48a56e157a6cd5e62876ffe48bd.pdf
Gedrich, K. & Karg, G. (2001). Dietary habits of German vs. Non-German residents in Germany. En Edwards J. S. A. & Hewedi M. M. (Eds.), Culinary Arts and Sciences III: Global and National Perspectives (pp. 419-428). Egypt, Al-Karma Press. Recuperado de https://www.researchgate.net/profile/Kurt-Gedrich/publication/260225444_Dietary_habits_of_German_vs_non-German_residents_in_Germany/links/0f317530355d387262000000/Dietary-habits-of-German-vs-non-German-residents-in-Germany.pdf
Ghaedi, E., Mohammadi, M., Mohammadi, H., Ramezani-Jolfaie, N., Malekzadeh, J., Hosseinzadeh, M., & Salehi-Abargouei, A. (2019). Effects of a Paleolithic Diet on Cardiovascular Disease Risk Factors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Advances in Nutrition, 10(4), 634–646. https://doi.org/10.1093/advances/nmz007
González-Rodríguez, L. G., Lozano-Estevan, M. C., Salas-González, M. D., Cuadrado-Soto, E., & Loria-Kohen, V. (2022). Beneficios y riesgos de las dietas vegetarianas. Nutrición Hospitalaria, 39 (spe3), 26-29. https://dx.doi.org/10.20960/nh.04306
Grant, M. J & Booth, A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies. Health Information and Libraries Journal, 26, 91-108. https://doi.org/10.1111/j.1471-1842.2009.00848.x
Kala, A. R., Espinosa, E., & Márquez, O. (2022). Caracterización sociodemográfica-alimentaria y la huella de carbono de la dieta de adultos mexicanos en la pandemia de COVID-19. Revista Chapingo Serie Agricultura Tropical, 2(2), 1–23. https://doi.org/10.5154/r.rchsat.2022.02.01
Kovacs, B., Miller, L., Heller, M. C., & Rose, D. (2021). The carbon footprint of dietary guidelines around the world: a seven country modeling study. Nutrition Journal, 20(1), 1–10. https://doi.org/10.1186/s12937-021-00669-6
Laborde, G. (2013). Identidad uruguaya en concina. Narrativas sobre el origen. [Tesis de doctorado]. Universitat de Barcelona. Recuperado de https://diposit.ub.edu/dspace/bitstream/2445/116483/1/LABORDE_TESIS.pdf
Loaiza, J. A. (2021). Huella de Carbono de la Producción de carne: revisión sistemática. [Tesis de licenciatura]. Universidad César Vallejo. Recuperado de https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/88505/Loaiza_BJA-SD.pdf
López-Olmedo, N., Stern, D., Bakhtsiyarava, M., Pérez-Ferrer, C., & Langellier, B. (2022). Greenhouse Gas Emissions Associated With the Mexican Diet: Identifying Social Groups With the Largest Carbon Footprint. Frontiers in Nutrition, 9(March), 1–10. https://doi.org/10.3389/fnut.2022.791767
Marcial, N., Hernández, M. & Figueroa, O. L. (2020). Los nuevos patrones de la dieta en México y el desafío con el impacto ambiental. En O. Vázquez & M. Carrillo (Eds.), Agenda pública, gobernanza metropolitana y planeación prospectiva para un desarrollo sostenible, incluyente y solidario (pp. 442-452). Puebla, Benemérita Universidad Autónoma de Puebla. Recuperado de https://www.researchgate.net/publication/344572465_Los_nuevos_Patrones_de_Dieta_en_Mexico_y_el_Desafio_con_el_Impacto_Ambiental
Mazac, R., Järviö, N., & Tuomisto, H. L. (2023). Environmental and nutritional Life Cycle Assessment of novel foods in meals as transformative food for the future. Science of The Total Environment, 876(10), 162796. https://doi.org/10.1016/j.scitotenv.2023.162796
Murakami, K. & Livingstone, B. E. (2018). Greenhouse gas emissions of self-selected diets in the UK and their association with diet quality: is energy under-reporting a problem? Nutrition Journal, 17(1), 17e27. https://doi.org/10.1186/s12937-018-0338-x
O’Malley, K., Willits-Smith, A., & Rose, D. (2023). Popular diets as selected by adults in the United States show wide variation in carbon footprints and diet quality. American Journal of Clinical Nutrition, 117(4), 701–708. https://doi.org/10.1016/j.ajcnut.2023.01.009
Organización Mundial de las Naciones Unidas para la Alimentación y la Agricultura. (2010). Report of the Technical Workshop on Biodiversity in Sustainable Diets. Recuperado de https://www.fao.org/fileadmin/templates/food_composition/documents/upload/i3022e.pdf
Organización Mundial de las Naciones Unidas para la Alimentación y la Agricultura (2015). Mediterranean food consumption patterns: diet, environment, society, economy and health. https://doi.org/10.13140/RG.2.1.3823.2405
Osawe, O. W., Grilli, G., & Curtis, J. (2023). Examining food preferences in the face of environmental pressures. Journal of Agriculture and Food Research, 11, 100476. https://doi.org/10.1016/j.jafr.2022.100476
Panzone, L. A., Sniehotta, F. F., Comber, R., & Lemke, F. (2020). The effect of traffic-light labels and time pressure on estimating kilocalories and carbon footprint of food. Appetite, 155(1), 104794. https://doi.org/10.1016/j.appet.2020.104794
Papier, K., Jordan, S., D’Este, C., Banwell, C., Yiengprugsawan, V., Seubsman, S. & Sleigh, A. (2017). Social Demography of Transitional Dietary Patternsin Thailand: Prospective Evidence from the Thai Cohort Study. Nutrients, 9(1173), 1-12. https://doi.org/10.3390/nu9111173
Rakhra, V., Galappaththy, L., Bulchandani, S., & Cabandugama, P. K. (2020). Obesity and the Western Diet: How We Got Here. Missouri Medicine, 117(6), 536–538. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721435/
Rose, D., Heller, M. C., Willits-Smith, A. M., & Meyer, R. J. (2019). Carbon footprint of self-selected US diets: Nutritional, demographic, and behavioral correlates. American Journal of Clinical Nutrition, 109(3), 535–543. https://doi.org/10.1093/ajcn/nqy327
Ruiz, S. (2017). Modelo de cálculo de la huella de carbono para el sistema Mexicano de alimentos equivalentes. JONNPR, 2(6), 226-232. https://doi.org/10.19230/jonnpr.1240
Saynes, V., Etchevers, J. D., Paz, F. & Alvarado, L. O. (2016). Emisiones de gases de efecto invernadero en sistemas agrícolas de México. Terra Latinoamericana, 34(1), 83-96. Recuperado de https://www.scielo.org.mx/pdf/tl/v34n1/2395-8030-tl-34-01-00083.pdf
Su, B., Zhang, C., Martens, P., & Cao, X. (2023). How economic and geographical indicators affect dietary environmental footprint: Evidence from China. Ecological Indicators, 148, 110075. https://doi.org/10.1016/j.ecolind.2023.110075
Travassos, G. F., Antônio da Cunha, D. & Coelho A. B. (2020). The environmental impact of Brazilian adults’ diet. Journal of Cleaner Production, 272, 122622. https://doi.org/10.1016/j.jclepro.2020.122622
Trolle, E., Nordman, M., Lassen, A. D., Colley, T. A., & Mogensen, L. (2022). Carbon Footprint Reduction by Transitioning to a Diet Consistent with the Danish Climate‐Friendly Dietary Guidelines: A Comparison of Different Carbon Footprint Databases. Foods, 11(8), 1119. https://doi.org/10.3390/foods11081119
van de Kamp, M. E., van Dooren, C., Hollander, A., Geurts, M., Brink, E. J., van Rossum, C., Biesbroek, S., de Valk, E., Toxopeus, I. B., Temme, E. (2018).
Healthy diets with reduced environmental impact? The greenhouse gas emissions of various diets adhering to the Dutch food based dietary guidelines. Food Research International, 104, 14-24. https://doi.org/10.1016/j.foodres.2017.06.006
Vecchio, M. G., Cherian, E., Paramesh, H., Loganes, C., Ballalli, S., Gafare, C. E., Verduci, E. & Gulati, A. (2014). Types of Food and Nutrient Intake in India: A Literature Review. The Indian Journal of Pediatrics, 81(Suppl 1), 17-22. https://doi.org/10.1007/s12098-014-1465-9
Von, J., Afsana, K., Fresco, L., & Hag, M. (2023). Science and Innovations for Food Systems Transformation. Recuperado de https://library.oapen.org/handle/20.500.12657/61280
Werner, L. B., Flysjö, A., & Tholstrup, T. (2014). Greenhouse gas emissions of realistic dietary choices in Denmark: The carbon footprint and nutritional value of dairy products. Food and Nutrition Research, 58, 1–16. https://doi.org/10.3402/fnr.v58.20687
Willits-Smith, A., Aranda, R., Heller, M. C., & Rose, D. (2020). Addressing the carbon footprint, healthfulness, and costs of self-selected diets in the USA: a population-based cross-sectional study. The Lancet Planetary Health, 4(3), 98-106. https://doi.org/10.1016/S2542-5196(20)30055-3
© Revista Mexicana de Trastornos Alimentarios/Mexican Journal of Eating Disorders.